miércoles, 25 de noviembre de 2009

videos de cometas

http://www.youtube.com/watch?v=Pbwz1NkvDxM



http://www.youtube.com/watch?v=

nombres y descripcion de los cometas

VISITAS DE COMETAS:





Cometa Kohoutek: Esta fotografía en color del cometa Kohoutek fue tomada por los miembros del Laboratorio Fotográfico Planetario y Lunar de la Universidad de Arizona. Ellos fotografiaron el cometa desde el Observatorio de Catalina con una cámara de 35 mm el 11 de Enero de 1974. (Cortesía NASA)





Cometa Hyakutake: Estas imágenes del Cometa Hyakutake desde el Telescopio Espacial Hubble fueron realizadas el 25 de Marzo de 1996 cuando el cometa pasó a una distancia de 15 millones de kilómetros (9.6 millones de millas) de la Tierra. Estas imágenes se centran en una región muy pequeña cercana al corazón del cometa, el congelado núcleo sólido y nos muestran una vista excepcionalmente clara de esta región del cometa.
La imagen de la izquierda tiene un ancho de 2070 millas (3340 km) y muestra que la mayor parte del polvo es producido en el hemisferio del cometa orientado al Sol. También, arriba a la izquierda, hay tres pedazos pequeños que se han separado del cometa y están formando sus propias colas. Las regiones heladas del núcleo se activan a medida que son iluminadas por la luz solar, proyectando grandes cantidades de polvo en forma de chorros como los que tenuemente se ven en esta imagen. La luz del Sol que incide sobre el polvo le da la vuelta y lo "empuja" hacia el hemisferio que mira hacia la cola.
La imagen de abajo a la derecha es una ampliación de la región cercana al núcleo y tiene sólo 470 millas (760 kilómetros) de ancho. El núcleo está cerca del centro de la foto, pero la región más brillante es quizás el extremo del más potente de los chorros de polvo más que el propio núcleo. Presumiblemente, la superficie del núcleo está situada justo debajo de este brillante chorro. La imagen arriba a la derecha muestra porciones del núcleo que aparentemente se han desgajado de él. La imagen muestra al menos tres objetos diferentes que están coacelerados hacia la cola, que parece ser el caso de la imagen. (Créditos: H. A. Weaver--Applied Research Corp., HST Comet Hyakutake Observing Team, y NASA)mpuestos probablemente por polvo de grano grueso. Los fragmentos de gran tamaño no son




Descubiertos los Primeros Rayos-X Procedentes del Cometa Hyakutake: Esta imagen muestra el descubrimiento de una señal generada por una fuerte radiación de rayos-X procedente del cometa Hyakutake. La imagen fue realizada el 27 de Marzo de 1996 utilizando el satélite alemán ROSAT. El cometa estaba cerca de su máxima aproximación a la Tierra a una distancia inferior a los 10 millones de millas cuando se detectaron desde el ROSAT las primeras radiaciones de rayos-X. La potencia y los rápidos cambios de intensidad de las emisiones de rayos-X procedentes del cometa sorprendieron y desconcertaron a los astrónomos. "No esperábamos ciertamente que un cometa brillara con rayos-X", dijo el Doctor Michael J. Mumma del Centro Goddard de Vuelos Espaciales de la NASA en Greenbelt, MD. Nunca antes se habían detectado rayos-X procedentes de un cometa, y los científicos habían predicho de forma optimista una intensidad que resultó ser unas 100 veces más débil que la radiación detectada por el ROSAT. Los grandes cambios en el brillo de los rayos-X fueron otra sorpresa. Se midieron grandes aumentos y descensos en el brillo de los rayos-X de una observación a otra del ROSAT, que se realizaban con una diferencia de varias horas.
Otro rompecabezas adicional es la naturaleza del proceso físico que da lugar a los rayos-X, aunque las imágenes del ROSAT podrían contener alguna pista sobre este proceso. En la imagen, los rayos-X procedentes del cometa parecen venir de una región en forma de creciente en el lado que mira al Sol del cometa Hyakutake. Una teoría preliminar es que la emisión de rayos-X procedentes del Sol fue absorbida por una nube gaseosa de moléculas de agua que rodeaban el núcleo del cometa, y que luego fueron reemitidas por las moléculas en un proceso que los físicos denominan "fluorescencia". De acuerdo con esta idea, la nube es tan densa que el lado que mira al Sol absorbe casi la totalidad de los rayos-X solares, de tal forma que son pocos los que llegan al resto de la nube. Esto podría explicar por qué las emisiones cometarias de rayos-X tienen la forma de un creciente, más que de una esfera que rodee al núcleo. Una segunda explicación posible es que los rayos-X son el producto de las violentas colisiones entre el material del cometa y el "viento" supersónico de plasma y partículas que forman la corriente que se aleja del Sol.



Cometa 1993a Mueller: Esta es una imagen CCD del cometa 1993a Mueller, tomada el 6 de Octubre de 1993, con un telescopio Schmidt-Cassegrain de 288mm f/5.2. El cometa tiene una cabellera de 3 pies (90 cm) de diámetro y una cola en forma de abanico de 7 pies (210 cm) de lontigud.




Cometa West (1975): Esta fotografía fue tomada por el astrónomo aficionado John Loborde el 9 de Marzo de 1976. La cola de plasma azul fino está compuesta por gases y la cola ancha blanca esta compuesta por partículas microscópicas de polvo.





Cometa West (1975): Esta imagen del Cometa West fue tomada por John Laborde en el Observatorio de Tierra del Sol en el Condado de San Diego. La exposición duró 30 minutos con una lente Nikon de 135 mm.






Cometa Hale-Bopp: Estas imágenes del cometa Hale-Bopp tomadas por el Telescopio Espacial Hubble de la NASA muestran un patrón notablemente parecido a un "molino de viento" y un grumo de escombros en vuelo libre cerca del núcleo. El brillante racimo de luz a lo largo de la espiral (sobre el núcleo, que está cerca del centro de la foto) podría ser un pedazo de la corteza helada del cometa que fue lanzada al espacio por una combinación de la evaporación del hielo y la rotación del cometa, y que luego se desitengró en un nube brillante de partículas.
Aunque el "grumo" es unas 3.5 veces más tenue que la porción más brillante del núcleo, el bulto parece más brillante porque cubre un área más grande. Los escombros trazan una espiral a medida que se separan porque el núcleo rota como un aspersor, completando una rotación por semana.



Cometa Hale-Bopp:Esta imagen del cometa Hale-Bopp fue tomada por John Laborde con su cámara Wright Schmidt casera de 8.8" f/3.7. La imagen fue tomada en el Observatorio de Tierra del Sol en el Condado de San Diego sobre una película Kodak PPF400 con un tiempo de exposición de 25 minutos.






Cometa Ikeya-Seki: Esta imagen del cometa Ikeya-Seki fue tomada por John Laborde en Poway, California justo antes del amanecer. La exposición duró 15 minutos con una lente Nikon de 55 mm.

Componentes de los Cometas




Los hombres primitivos ya conocían los cometas. Los más brillantes se ven muy bien y no se parecen a ningún otro objeto del cielo.
Parecen manchas de luz, a menudo borrosas, que van dejando un rastro o cabellera. Esto los hace atractivos y los rodea de magia y misterio.
Los cometas son cuerpos frágiles y pequeños, de forma irregular, formados por una mezcla de substancias duras y gases congelados


El cometa West, con sus colas de plasma y polvo.
Las estructuras de los cometas son diversas y muy dinámicas, pero todos ellos desarrollan una nube de material difuso que los rodea, denominada cabellera, que generalmente crece en tamaño y brillo a medida que el cometa se aproxima al Sol. Generalmente es visible un pequeño núcleo brillante (menos de 10 kilómetros de diámetro) en el centro de la cabellera. La cabellera y el núcleo juntos constituyen la cabeza del cometa.

A medida que los cometas se aproximan al Sol desarrollan colas enormes de material luminoso que se extienden por millones de kilómetros desde la cabeza, alejándose del Sol. Cuando están lejos del Sol, el núcleo está muy frío y su material está congelado. En este estado los cometas reciben a veces el nombre de "iceberg sucio" o "bola de nieve sucia". Cuando un cometa se aproxima al Sol, a pocas UA (unidades astronómicas) del Sol, la superficie del núcleo empieza a calentarse y los volátiles se evaporan. Las moléculas evaporadas se desprenden y arrastran con ellas pequeñas partículas sólidas formando la cabellera del cometa, de gas y polvo.
Cuando el núcleo está congelado, puede ser visto solamente debido a la luz solar reflejada. Sin embargo, cuando se crea la cabellera, el polvo refleja más luz solar y el gas de la cabellera absorbe la radiación ultravioleta y empieza a fluorescer. A unas 5 UA del sol, la fluorescencia generalmente se hace más intensa que la luz reflejada.
A medida que el cometa absorbe la luz ultravioleta, los procesos químicos desprenden hidrógeno, que escapa a la gravedad del cometa y forma una envuelta de hidrógeno. Esta envuelta no puede ser vista desde la Tierra ya que su luz es absorbida por nuestra atmósfera, pero ha sido detectada por las naves espaciales.
La presión de la radiación solar y los vientos solares aceleran los materiales alejándolos de la cabeza del cometa a diferentes velocidades de acuerdo con el tamaño y masa de los materiales. Por esto, las colas de polvo relativamente masivas son aceleradas más despacio y tienden a ser curvadas. La cola iónica es mucho menos masiva, y es acelerada tanto que aparece como una línea casi recta que se extiende desde el cometa en el lado opuesto al sol. La siguiente imagen del Cometa West muestra dos colas diferentes. La cola de plasma azul fino está compuesta por gases y la cola ancha blanca esta compuesta por partículas microscópicas de polvo.

Composicion de los Cometas



Composición:
Los cometas están compuestos de agua, hielo seco, amoníaco, metano, hierro, magnesio y silicatos. Debido a las bajas temperaturas de los lugares donde se hallan, estas sustancias que componen al cometa se encuentran congeladas. Llegan a tener diámetros de algunas decenas de kilómetros. Algunas investigaciones apuntan que los materiales que componen los cometas son materia orgánica que son determinantes para la vida, y que esto dio lugar para que en la temprana formación de los planetas estos impactaran contra la tierra y dieran origen a los seres vivos.Los cometas presentan diferentes tipos de colas. Las más comunes son la de polvo y la de gas. La cola de gas se dirige siempre en el sentido perfectamente contrario al de la luz del Sol, mientras que la cola de polvo retiene parte de la inercia orbital, alineándose entre la cola principal y la trayectoria del cometa. El choque de los fotones que recibe el cometa como una lluvia, aparte de calor, aportan luz, siendo visible al ejercer el cometa de pantalla; reflejando así cada partícula de polvo la luz solar. En el cometa Hale-Bopp se descubrió un tercer tipo de cola compuesta por iones de sodio.
Las colas de los cometas llegan a extenderse de forma considerable, alcanzando millones de kilómetros. En el caso del cometa 1P/Halley, en su aparición de 1910, la cola llegó a medir cerca de 30 millones de kilómetros, un quinto de la distancia de la Tierra al Sol. Cada vez que un cometa pasa cerca del Sol se desgasta, debido a que el material que va perdiendo ya nunca es repuesto. Se espera que, en promedio, un cometa pase unas 2 mil veces cerca del Sol antes de sublimarse completamente. A lo largo de la trayectoria de un cometa, éste va dejando grandes cantidades de pequeños fragmentos de material.
Cuando la Tierra atraviesa la órbita de un cometa, estos fragmentos penetran en la atmósfera en forma de estrellas fugaces o también llamadas lluvia de meteoros. En mayo y octubre se pueden observar las lluvias de meteoros producidas por el material del cometa Halley: las eta Acuáridas y las Oriónidas.
Los astrónomos sugieren que los cometas retienen, en forma de hielo y polvo, la composición de la nebulosa primitiva con que se formó el Sistema Solar y de la cual se condensaron luego los planetas y sus lunas. Por esta razón el estudio de los cometas puede dar indicios de las características de aquella nube primordial.
















Estudio de sus características físicas-Historia del estudio de los cometas

Estudio de órbitas


Movimiento de un cometa alrededor del Sol (A) Sol (B) Tierra (C) Cometa
No se estableció definidamente hasta en el siglo XVI si los cometas eran fenómenos atmosféricos u objetos interplanetarios, periodo en que Tycho Brahe realizó estudios que revelaron que éstos debían provenir fuera de la atmósfera terrestre. Luego en el siglo XVII, Edmund Halley utilizó la teoría de la gravitación, desarrollada por Isaac Newton, para intentar calcular el número de órbitas en los cometas. Permitiéndole descubrir que uno de ellos volvía a la cercanía del sol cada 76 ó 77 años aproximadamente. Pronto, éste comenzó a llamarse cometa Halley, y de fuentes antiguas se sabe que ha sido observado por humanos desde 66 a. C.
El segundo cometa al que se le descubrió una órbita periódica fue el cometa Encke, en 1821. Como el cometa de Halley, tuvo el nombre de su calculador, el matemático y físico alemán Johann Encke, que descubrió que era un cometa periódico. El cometa de Encke tiene el más corto periodo de un cometa, solamente 3.3 años, y por consecuencia éste tiene el mayor número de apariciones registradas. Fue también el primer cometa cuya órbita era influida por fuerzas que no eran del tipo gravitacional. A pesar de todo, ahora es un cometa muy tenue para ser visible a simple vista, pudo haber sido un cometa brillante algunos miles de años atrás, antes que su superficie de hielo fuera evaporada. Sin embargo, no se ha sabido si ha sido observado antes de 1786, pero análisis mejorados de su órbita temprana sugieren que corresponde a observaciones mencionadas en fuentes antiguas.
No fue hasta el periodo de la era espacial en que la composición de los cometas fue probada. A principios del Siglo XIX, un matemático alemán, Friedrich Bessel originó la teoría de que habían objetos sólidos en estado de vaporación: del estudio de su brillosidad, Bessel expusó que los movimientos no-gravitacionales del cometa Encke fueron causados por fuerzas de chorro creadas como material evaporado de la superficie del objeto. Esta idea fue olvidada por más de cien años, y luego Fred Lawrence Whipple independientemente propuso la misma idea en 1950. Para Whipple un cometa es un núcleo rocoso mezclado con hielo y gases es decir utilizando su terminología una bola de nieve sucia. El modelo propuesto por ambos pronto comenzó a ser aceptado por la comunidad científica. Fue confirmado cuando una armada de vehículos espaciales voló a través de la nube luminosa de partículas que rodeaban el núcleo congelado del cometa Halley en 1986 para fotografiar el núcleo y observaron los chorros de material que se evaporaba. Luego la sonda Deep Space 1 voló cerca del cometa Borrelly el 21 de septiembre de 2001, confirmado que las características del Halley son comunes en otros cometas también.

Cometas



Los cometas son cuerpos celestes constituidos por hielo y rocas que orbitan el Sol siguiendo órbitas muy elípticas. Los cometas, junto con los asteroides, planetas y satélites, forman parte del Sistema Solar. La mayoría de estos cuerpos celestes describen órbitas elípticas de gran excentricidad, lo que produce su acercamiento al Sol con un período considerable. A diferencia de los asteroides, los cometas son cuerpos sólidos compuestos de materiales que se subliman en las cercanías del Sol. A gran distancia (a partir de 5-10 UA) desarrollan una atmósfera que envuelve al núcleo, llamada coma. Esta coma está formada por gas y polvo. Conforme el cometa se acerca al Sol, el viento solar azota la coma y se genera la cola o cabellera característica. La cola está formada por polvo y el gas de la coma ionizado.
Fue después del invento del telescopio que los astrónomos comenzaron a estudiar a los cometas con más detalle, advirtiendo entonces que la mayoría de estos tienen apariciones periódicas. Edmund Halley fue el primero en darse cuenta de esto y pronosticó en 1705 la aparición del cometa Halley en 1758, para el cual calculó que tenía un periodo de 76 años. Sin embargo, murió antes de comprobar su predicción. Debido a su pequeño tamaño y órbita muy alargada, solo es posible ver los cometas cuando están cerca del Sol y por un periodo corto de tiempo.
Los cometas son generalmente descubiertos visual o fotográficamente usando telescopios de campo ancho u otros medios de magnificación óptica, tales como los binoculares. Sin embargo, aún sin acceso a un equipo óptico, es posible descubrir un cometa rasante solar en línea con una computadora y una conexión a Internet. En los años recientes, el Observatorio Rasante Virtual de David (David J. Evans) (DVSO) le ha permitido a muchos astrónomos aficionados de todo el mundo, descubrir nuevos cometas en línea (frecuentemente en tiempo real) usando las últimas imágenes del Telescopio Espacial SOHO.

Los cometas son cuerpos celestes constituidos por hielo y rocas que orbitan el Sol siguiendo órbitas muy elípticas. Los cometas, junto con los asteroides, planetas y satélites, forman parte del Sistema Solar. La mayoría de estos cuerpos celestes describen órbitas elípticas de gran excentricidad, lo que produce su acercamiento al Sol con un período considerable. A diferencia de los asteroides, los cometas son cuerpos sólidos compuestos de materiales que se subliman en las cercanías del Sol. A gran distancia (a partir de 5-10 UA) desarrollan una atmósfera que envuelve al núcleo, llamada coma. Esta coma está formada por gas y polvo. Conforme el cometa se acerca al Sol, el viento solar azota la coma y se genera la cola o cabellera característica. La cola está formada por polvo y el gas de la coma ionizado.
Fue después del invento del telescopio que los astrónomos comenzaron a estudiar a los cometas con más detalle, advirtiendo entonces que la mayoría de estos tienen apariciones periódicas. Edmund Halley fue el primero en darse cuenta de esto y pronosticó en 1705 la aparición del cometa Halley en 1758, para el cual calculó que tenía un periodo de 76 años. Sin embargo, murió antes de comprobar su predicción. Debido a su pequeño tamaño y órbita muy alargada, solo es posible ver los cometas cuando están cerca del Sol y por un periodo corto de tiempo.
Los cometas son generalmente descubiertos visual o fotográficamente usando telescopios de campo ancho u otros medios de magnificación óptica, tales como los binoculares. Sin embargo, aún sin acceso a un equipo óptico, es posible descubrir un cometa rasante solar en línea con una computadora y una conexión a Internet. En los años recientes, el Observatorio Rasante Virtual de David (David J. Evans) (DVSO) le ha permitido a muchos astrónomos aficionados de todo el mundo, descubrir nuevos cometas en línea (frecuentemente en tiempo real) usando las últimas imágenes del Telescopio Espacial SOHO.


Origen:
Los cometas provienen principalmente de dos lugares, la Nube de Oort, situada entre 50.000 y 100.000 UA del Sol, y el Cinturón de Kuiper, localizado más allá de la órbita de Neptuno.

Los cometas que se acercan al Sol siguen órbitas elípticas tan alargadas que sólo regresan al cabo de miles de años. Cuando alguna estrella pasa muy cerca del Sistema Solar, las órbitas de los cometas de la Nube de Oort se ven perturbadas: algunos salen despedidos fuera del Sistema Solar, pero otros acortan sus órbitas.
Las órbitas de los cometas están cambiando constantemente: sus orígenes están en el sistema solar exterior, y tienen la propensión a ser altamente afectados (o perturbados) por acercamientos relativos a los planetas mayores. Algunos son movidos a órbitas muy cercanas al Sol (a ras del césped solar) que los destruyen cuando se aproximan, mientras que otros son enviados fuera del sistema solar para siempre.


Origen:
Los cometas provienen principalmente de dos lugares, la Nube de Oort, situada entre 50.000 y 100.000 UA del Sol, y el Cinturón de Kuiper, localizado más allá de la órbita de Neptuno.

Los cometas que se acercan al Sol siguen órbitas elípticas tan alargadas que sólo regresan al cabo de miles de años. Cuando alguna estrella pasa muy cerca del Sistema Solar, las órbitas de los cometas de la Nube de Oort se ven perturbadas: algunos salen despedidos fuera del Sistema Solar, pero otros acortan sus órbitas.
Las órbitas de los cometas están cambiando constantemente: sus orígenes están en el sistema solar exterior, y tienen la propensión a ser altamente afectados (o perturbados) por acercamientos relativos a los planetas mayores. Algunos son movidos a órbitas muy cercanas al Sol (a ras del césped solar) que los destruyen cuando se aproximan, mientras que otros son enviados fuera del sistema solar para siempre.